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About

Machine Learning meets Scientific Understanding

The Emmy Noether group UDNN: Scientific Understanding and Deep Neural Networks is pleased
to host its second workshop,Machine LearningMeets Scientific Understanding, which takes place
on June 26th and 27th at TU Dortmund University. This interdisciplinary event brings together
philosophers of science and Machine Learning (ML), as well as ML practitioners, to explore the
intersections between ML and scientific understanding.

Organizers: Annika N. Schuster, Frauke Stoll, Leon Augustin, Levin Burghardt & Florian J. Boge
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Timetable

Thursday, June 26th

09:00 Arrival
10:00 Introduction

10:15–11:00 Holger Lyre
Magdeburg University

Semantic Grounding in Advanced
LLMs?

11:15–12:00 Daniel Neider
TU Dortmund

A Gentle Introduction to Neural
Network Verification (and How It
Might Contribute to Evaluating

Scientific Insights)
12:00–13:00 Lunch

13:00–13:45 Heather Champion
Tübingen University

On Scientific Discovery With Machine
Learning: What is “Strong” Novelty?

14:00–14:45 Edward Chang
Stanford University

From Generative AI to AGI: Multi-LLM
Agent Collaboration as a Path Forward

14:45–15:15 Coffee Break

15:15–16:00 Emily Sullivan
Utrecht University Idealization Failure in ML

16:15–17:00
Henk W. de Regt & Eugene

Shalugin
Radboud University

Bridging Scientific Understanding and
Creativity with an LLM Benchmark for

Narrow-Domain Scientific Fields
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Friday, June 27th

09:00 Introduction

09:15–10:00
Darrell Rowbottom

Lingnan University Hong
Kong

What’s Hidden Inside Predictively
Successful Deep Learning Models?

10:15–11:00 Sara Pernille Jensen
Oslo University

The Underdetermination of
Representational Content in DNNs

11:15–12:00 Timo Freiesleben
Tübingen University

The Benchmarking Epistemology –
What Inferences Can Scientists Draw
from Competitive Comparisons of

Prediction Models?
12:00–13:00 Lunch

13:00–13:45 Giovanni Galli
University of Teramo

Deep-learning Models and Scientific
Understanding through Explanations

and Representations

14:00–14:45 Insa Lawler
UNC Greensboro

Machine Learning, AI, and The
Gradability of Explanatory

Understanding
14:45–15:00 Coffee Break

15:00–15:45 Finnur Dellsén
University of Iceland Scientific Progress in the Age of AI

16:00–16:45 Cameron Buckner
University of Florida

Predictively-Valid “Alien” Features, or
Artifacts? Coping with Inscrutable

Scientific Progress
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Abstracts

Thursday, June 26th

Semantic Grounding in Advanced LLMs
Holger Lyre

Magdeburg University

ML models serve as scientific tools and help to deliver our scientific understanding in much the
same way as models in general. However, ML models are special in a certain respect: namely,
when these models themselves acquire a semantic grounding, when they start to become cog-
nitive and thus possess a form of understanding themselves. Obviously, semantically grounded
models will be far more powerful than ungrounded models, they could potentially achieve the
status of scientific partners rather than tools. In my talk, I will explore the question of whether ad-
vanced LLMs already show signs of semantic grounding, and I will argue that this is indeed the case.
To assess the question of semantic grounding, fivemethodological ways will be distinguished. The
most promising way, I claim, is to apply core assumptions of theories of meaning in philosophy of
mind and language to LLMs. I will demonstrate that grounding proves to be a gradual affair with
a three-dimensional distinction between functional, social and causal grounding. Modern LLMs
show basic evidence in all three dimensions. A strong argument is that they develop world mod-
els. Hence, LLMs are no stochastic parrots, but already understand the language they generate,
at least in an elementary sense.

A Gentle Introductino to Neural Network Verification (and How It Might Con-
tribute to Evaluating Scientific Insights)
Daniel Neider

TU Dortmund

The increasing use of artificial intelligence in safety-critical domains such as autonomous systems
and healthcare demands robustmethods to ensure the reliability and safety of these technologies.
Neural network verification has emerged as a vital research area, providing algorithmic frame-
works to rigorously analyze and guarantee critical properties of neural networks across diverse
applications. This talk provides an accessible introduction to this critical field, with a specific em-
phasis on safety-critical properties of neural networks and the algorithmic frameworks designed
to automatically verify these properties. Furthermore, we briefly discuss how verification might
contribute to evaluating scientific insights obtained throughmachine learning, inviting exploration
of its potential role in advancing scientific understanding.
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On Scientific Discovery With Machine Learning: What is ”Strong” Novelty?

Heather Champion

Tübingen University

Recent philosophical accounts of machine learning’s (ML) impact negatively appraise the signif-
icance of its contribution to changing scientific theory, understanding, or concepts. While valu-
able, these analyses tend to focus narrowly on one kind of strong disruption claim owing to one
notion of “strong” novelty, which is not always clarified. Meanwhile, some philosophers assess
whether the capacities of ML algorithms are sufficient to cause one of these disruptions (e.g.
whether they utilize creative processes). But what exactly constitutes strongly novel outcomes of
ML-enabled science? Omitting a multifaceted answer to this question risks overemphasizing the
non-disruptiveness of ML. Also, while the analysis of novel outcomes and the means that success-
fully achieve them are inevitably linked, outcome desiderata play an important role in evaluating
human-computer interactions. Therefore, I focus on outcomes enabled byML, such as predictions,
ideas, or virtual artifacts. I first raise three difficultieswith Ratti (2020) and Boge’s (2022) outcome-
based characterizations of strong novelty: (1) Ratti’s domain-specific focus is unnecessary, (2) both
underappreciate the scientific impact of token predictions, and (3) Boge is ambiguous about the
kind of prior information he takes to be disqualifying for “use novelty,” while I argue that on sev-
eral interpretations, use novelty does not helpfully discriminate strong novelty. However, their
accounts capture useful intuitions: changes to existing theory, scientific knowledge, or research
direction are highly impacting, as are many outcomes achieved without a certain kind of informa-
tional bias (elaborated below).

Next, I introduce a new, wide, variety of outcome-based notions of strong novelty from philos-
ophy of creativity, epistemology, and philosophy of science. I illustrate these with cases from var-
ious scientific domains, such as economics and astrophysics. First, a creative outcome generates
surprise when an idea with low expected utility turns out to be useful. Alternatively, outcomes
that reduce uncertainty (“blindness”) regarding an idea’s utility helpfully steer research. These
notions of belief revision assume a state of awareness regarding a proposition, but ML might also
generate this awareness, eliminating deep ignorance regarding scientifically useful patterns, evi-
dence, or hypotheses. Zooming out from these notions of local epistemic change, MLmight make
broader impact by prompting conceptual change. Particularly, if deep learning methods directly
learn conceptualizations useful for specific tasks, these might diverge from existing human con-
ceptualizations. Finally, using ML to learn from data with some independence of local theory
regarding a target phenomenon has generative power for scientific change. I define local theory
as theory that demarks or explains a target phenomenon. This “bottom-up” form of learning con-
stitutes strong novelty for science because it signals an aim to find a new research direction, often
by relying on a different set of cognitive tools for analyzing multidimensional data. It also clarifies
that local theory is the kind of prior information that diminishes the generative impact of an ML
prediction. My taxonomy clarifies desiderata for scientific exploration with ML and complements
assessments of what algorithmic processes might achieve them. It also invites reflection on how
some forms of novelty might co-occur and what problems this raises for scientific understanding.

References
[1] Boge, Florian J. “Two Dimensions of Opacity and the Deep Learning Predicament.” Minds and
Machines 32 (2022): 43–75.
[2] Ratti, Emanuele. “What Kind of Novelties Can Machine Learning Possibly Generate? The Case
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of Genomics.” Studies in History and Philosophy of Science Part A 83 (2020): 86–96.

From Generative AI to AGI: Multi-LLM Agent Collaboration as a Path Forward
Edward Chang

Stanford University

The rise of large language models (LLMs) has transformed AI—shifting it from passive analysis
to generative capabilities, from narrow task-specific tools to general-purpose systems, and from
monolithic models to collaborative multi-agent frameworks. While some experts anticipate the
emergence of Artificial General Intelligence (AGI) by 2040, critics like LeCun (2023) argue that
LLMs cannot lead to AGI, citing their lack of world models, persistent memory, structured reason-
ing, and planning capabilities. Critics also highlight how LLMs require massive training data yet
still fail to match the efficient few-shot learning demonstrated by even young children.

This talk challenges these critiques by positioning LLMs not as complete solutions, but as neces-
sary substrates for AGI emergence, analogous to howunconscious processes enable conscious rea-
soning in humans. Just as humans aren’t bornwith blank slates but with neural priors that scaffold
learning, LLMs provide foundational capabilities for in-context learning and environmental adap-
tation. By augmenting LLMs with transactional reliability, self-validation mechanisms, Socratic
reasoning, and multi-agent architectures, we can address their current limitations. The proposed
Multi-LLM Agent Collaboration framework offers a pragmatic, scalable path toward AGI, where
intelligence emerges not from a single model but through structured interaction, persistent mem-
ory, and collective reasoning across networked systems.

Idealization Failure in ML
Emily Sullivan

Utrecht University

Idealizations, deliberate distortions introduced into scientific theories and models, are common-
place in science. This has led to a puzzle in epistemology and philosophy of science: How could a
deliberately false claim or representation lead to the epistemic successes of science? In answering
this question philosophers have been single-focused on explaining how and why idealizations are
successful. But surely some idealizations fail. I propose that if we ask a slightly different question,
whether a particular idealization is successful, then that not only gives insight into idealization fail-
ure, but will make us realize that our theories of idealization need revision. In this talk I consider
idealizations in computation and machine learning.
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Bridging Scientific Understanding and Creativity with an LLM Benchmark for
Narrow-Domain Scientific Fields

Henk W. de Regt and Eugene Shalugin

Radboud University

The rapid advancement of large language models (LLMs) raises questions about their potential to
understand complex scientific domains and contribute to scientific discovery. It has been argued
that LLMs are ‘stochastic parrots’ that make predictions on the basis of large training data sets
and are therefore incapable of genuine understanding and creativity [2]. However, such claims
presuppose certain philosophical conceptions of understanding and creativity, which remain un-
examined. We claim, by contrast, that current philosophical insights into the nature of scientific
understanding and creativity allow for the possibility of scientific understanding and creativitywith
LLMs - at least in a restricted sense. Nonetheless, a benchmark for evaluating such understanding
and creativity has not yet been developed. The aim of our paper is to fill this gap by developing
a semi-automated LLM benchmark creation pipeline for narrow-domain scientific fields for these
scientific capabilities, utilizing both human experts and LLMs. With regard to understanding, we
adopt Barman et al.’s [1] behavioural conception, which implies that an agent’s understanding
consists in its ability to process, integrate, and apply knowledge, also in unseen scenarios, beyond
mere factual retrieval. In particular, we focus on assessing the type of questions an agent can
answer. With regard to creativity, we follow Boden [3] and call a scientific product creative if it is
valuable, novel, and surprising.

We propose a pipeline for the semi-automated creation of questions to evaluate LLMs’ under-
standing and creativity in narrow-domain scientific fields. We focus on creating what-, why-, and
w-questions (counterfactuals). The questions are generated using human-provided texts with
trusted information (e.g. lecture notes, scientific papers, textbooks). Parts of the set of documents
are then provided to the LLMs as context with Retrieval AugmentedGeneration (RAG) and the LLM
is tasked with generating questions based on the documents. Domain experts are then invited to
review the validity and sensibility of the questions. The resulting question-answer pairs form a
high-quality narrow-domain benchmark. We use the field of particle physics as a case study and
introduce the platform www.physicsbenchmark.org for generation and curation of high-quality
questions. Using this dataset of factual, explanatory, and counterfactual questions, we evaluate
howwell state-of-the-art LLMs understand particle physics. Contextual grounding is toggled via ac-
cess to the corpus. We then propose a scientific creativity benchmark (SCB) that challenges LLMs
with questions whose answers lie outside their training data. These questions are either unprece-
dented counterfactual queries or questions about scientific literature published after 2023 (the
cutoff date of the tested models). By formulating prompts that fall beyond the statistical patterns
the model has learned, we induce a form of novelty: if the model provides a satisfactory answer
to, say, a frontier particle physics question, it must have performed non-trivial logical transforma-
tions on its outdated information. This deviation serves as an epistemically surprising indicator
of creative output, meeting our criteria for responses that are not only novel and unexpected but
also valuable. (N.B.: we do not argue that LLMs are creative agents but that they can generate
creative products.)

References
[1] K. G. Barman, S. Caron, T. Claassen, and H.W. de Regt, “Towards a Benchmark for Scientific
Understanding in Humans and Machines,”Minds and Machines, 34(1), 2024, doi: 10.1007/s11023-
024-09657-1.
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[2] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the Dangers of Stochastic
Parrots: Can Language Models Be Too Big?,” in Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, Mar. 2021, pp. 610–623. doi: 10.1145/3442188.3445922.
[3] M. A. Boden, The Creative Mind: Myths and Mechanisms. Psychology Press, 2004

Friday, June 27th

What’s Hidden Inside Predictively Successful Deep Learning Models?
Darrell P. Rowbottom

Lingnan University Hong Kong

to be announced
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The Underdetermination of Representational Content in DNNs

Sara Pernille Jensen

Oslo University

There is widespread hope of using ML models to make new scientific discoveries. As part of this
endeavour, much effort is being put into establishing methods for interpreting the learned basis
vectors in the latent spaces of deep neural networks (DNNs) (Räz 2023; Boge 2024), motivated
by the belief that the networks implicitly learn scientifically relevant representations or concepts
from the data (Buckner 2020; Bau et al. 2020). By studying these learned representations, we
may learn about new dependencies and structures in nature. However, there is disagreement re-
garding how concepts are represented in the hidden layers, specifically whether they are localized
or distributed across nodes, and whether they are linear or non-linear.

Here, I argue that for distributed representations, linear or not, the conceptual content of the
representations will often be underdetermined. For classical scientific representations, one can
unambiguously tell whether a concept has been represented or not, since the concepts repre-
sented are, e.g., those explicitly symbolized in an equation. Such representations, with their ex-
plicit conceptual content, stand in contrast with mere informational content. For although the
information about some derived property is present in the original representation, the derived
property is not thereby itself represented.

My worry is whether the different accounts of representations in DNNs lead to any detectable
differences between informational and conceptual content in the representations. I assume Hard-
ing’s operationalized definition of representations in DNNs, requiring a representation to carry in-
formational content about its target, that the later layers of the network use the representation,
and that it comes with a possibility of misrepresentation (Harding 2023). Local representations
are unproblematic, since each node is dependent on a single variable, so only represents the con-
cept corresponding to that variable. The problem arises for both linear and non-linear distributed
representations, where any compound variable derivable from (non-)linear transformations of a
set of activations in a given layer may be represented.

Here, the conceptual content will be underdetermined in cases where the concepts include
sets of variables which are defined in terms of each other. Examples include the ideal gas law,
PV = nRT ; the total energy, Etotal = Ekin + Epot; and the Lagrangian, L = Ekin − Epot. Impor-
tantly, these dependencies are often empirical discoveries, not analytic truths, so the concepts
themselves are not defined in terms of each other. Yet, when the model represents and concep-
tualizes two of the three variables, there will be no way for us to tell which of the three that is,
due to their interdependence and equivalent model functionality. It will therefore be underdeter-
mined what the conceptual content of the representation is.

I consider two implications of this finding. Firstly, it suggests some caution in our use of such an-
thropomorphic language of representations and concepts, for if the conceptual content of repre-
sentations is sometimes underdetermined for DNNs, we might need to reconsider what we really
mean by ”representations of concepts.” Secondly, the underdetermination introduces an addi-
tional difficulty in learning new concepts and relations from distributed representations in DNNs,
which might have implications for their usefulness in scientific discoveries.

References
[1] Bau, David, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
2020. “Understanding the Role of Individual Units in a Deep Neural Network.” Proceedings of the
National Academyof Sciences 117 (48): 30071–78. https://doi.org/10.1073/pnas.1907375117.
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[2] Boge, Florian J. 2024. “Functional Concept Proxies and the Actually Smart Hans Problem:
What’s Special About Deep Neural Networks in Science.” Synthese 203 (1): 1–39. https://doi.
org/10.1007/s11229-023-04440-8.
[3] Buckner, Cameron. 2020. “Understanding Adversarial Examples Requires a Theory of Arte-
facts for Deep Learning.” Nature Machine Intelligence 2 (12): 731–36. https://doi.org/10.
1038/s42256-020-00266-y.
[4] Harding, Jacqueline. 2023. “Operationalising Representation in Natural Language Process-
ing.” The British Journal for the Philosophy of Science, November. https://doi.org/10.1086/
728685.
[5] Räz, Tim. 2023. “Methods for Identifying Emergent Concepts in Deep Neural Networks.” Pat-
terns 4 (6): 100761. https://doi.org/10.1016/j.patter.2023.100761.
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The Benchmarking Epistemology – What Inferences Can Scientists Draw from
Competitive Comparisons of Prediction Models?

Timo Freiesleben

Tübingen University

Benchmarking—the practice of evaluating machine learning (ML) models based on their predic-
tive performance on test datasets and ranking them against competitors—is a cornerstone of ML
research. Often referred to as the “iron rule” ofmachine learning, benchmarking typically involves
four key components: (1) prediction tasks, defining the target variables and predictors; (2) evalua-
tion metrics, determining what constitutes good predictions; (3) datasets, including a training set
for model development and a test set for performance assessment; and (4) leaderboards, which
rank models based on their test set performance.

As ML becomes a widespread tool in the natural and social sciences, benchmarking is increas-
ingly adopted as a standard method of scientific evaluation [1], [2], [3]. Despite its practical impor-
tance, the philosophy of science community has paid surprisingly little attention to benchmarking.
Existing discussions have instead focused on inductive inference in ML [4], [5], opacity [6], [7], [8],
and explainability [9], [10].

This paper addresses the gap by arguing that benchmarking constitutes a scientific epistemol-
ogy in its own right, offering a distinct framework for scientific inference. We analyze four types
of inferences commonly drawn from benchmarking: (1) identifying the (current) best model for
task T ; (2) determining the (current) best learning algorithm for tasks similar to T ; (3) selecting
the (current) most suitable model for deployment in a specific application; and (4) estimating the
optimal predictability of a target Y given featuresX .

A central insight is that none of these inferences can be drawn from benchmark results alone;
each requires further assumptions to be valid. Similar to inference from psychological testing,
ensuring construct validity is essential [11]. These additional assumptions must be specified and
justified by further evidence [12].

To ground our analysis, we examine three case studies from diverse scientific domains: the Im-
ageNet benchmark for image recognition [13], the Fragile Families benchmark for predicting life
outcomes [14], and the WeatherBench benchmark for global weather forecasting [15], [16].

Beyond epistemic uses, benchmarks also play crucial social roles—organizing scientific commu-
nities around shared goals. However, these social functions can threaten the epistemic validity of
benchmarking inferences. For example, iterative use of benchmarks for model tuning undermines
the assumption that test data remains unseen, an assumption critical for valid benchmarking [17],
[18]. Moreover, benchmarks are often treated as proxies for scientific significance in peer review,
incentivizing practices akin to p-hacking [19], [20].

We argue that while benchmarks are powerful scientific tools, they must be used with aware-
ness of their inferential and sociological limitations.

References
[1] Kitchin, R. 2014. Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society 1(1):
2053951714528481.
[2] Mussgnug, A. M. 2022. The Predictive Reframing of Machine Learning Applications. European
Journal for Philosophy of Science 12(3): 55.
[3] Pankowska, P., Mendrik, A., Emery, T., and Garcia-Bernardo, J. 2023. Accelerating Progress
in the Social Sciences: The Potential of Benchmarks. https://doi.org/10.31235/osf.io/
ekfxy.
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[4] Sterkenburg, T. F., and Grünwald, P. D. 2021. The No-Free-Lunch Theorems of Supervised
Learning. Synthese 199(3): 9979–10015.
[5] Karaca, K. 2021. Values and Inductive Risk in Machine Learning Modelling. European Journal
for Philosophy of Science 11(4): 102.
[6] Creel, K. A. 2020. Transparency in Complex Computational Systems. Philosophy of Science
87(4): 568–589.
[7] Boge, F. J. 2022. Two Dimensions of Opacity and the Deep Learning Predicament. Minds and
Machines 32(1): 43–75.
[8] Sullivan, E. 2022. Understanding from Machine Learning Models. The British Journal for the
Philosophy of Science.
[9] Zednik, C., and Boelsen, H. 2022. Scientific Exploration and Explainable Artificial Intelligence.
Minds and Machines 32(1): 219–239.
[10] Freiesleben, T., Königg, G., Molnar, C., and Tejero-Cantero, Á. 2024. Scientific Inference with
Interpretable Machine Learning. Minds and Machines 34(3): 32.
[11] AERA, APA, and NCME. 2014. Standards for Educational and Psychological Testing. American
Educational Research Association.
[12] Messick, S. 1995. Standards of Validity and the Validity of Standards in Performance Assess-
ment. Educational Measurement: Issues and Practice 14(4): 5–8.
[13] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. 2009. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 248–255.
[14] Salganik, M. J., Lundberg, I., Kindel, A. T., and McLanahan, S. 2019. Introduction to the Fragile
Families Challenge. Socius 5.
https://doi.org/10.1177/2378023119871580. [15] Rasp, S., Dueben, P. D., Scher, S., Weyn,
J. A., Mouatadid, S., and Thuerey, N. 2020. WeatherBench: A Benchmark Dataset for Data-Driven
Weather Forecasting. JAMES 12(11): e2020MS002203.
[16] Rasp, S., Hoyer, S., Merose, A., et al. 2024. WeatherBench 2: A Benchmark for the Next Gen-
eration of Data-Driven Global Weather Models. JAMES 16(6): e2023MS004019.
[17] Grote, T., Genin, K., and Sullivan, E. 2024. Reliability in Machine Learning. Philosophy Com-
pass 19(5). https://doi.org/10.1111/phc3.12974.
[18] Hardt, M., and Recht, B. 2022. Patterns, Predictions, and Actions: Foundations of Machine
Learning. Princeton University Press.
[19] Gelman, A., and Loken, E. 2014. The Statistical Crisis in Science. American Scientist 102(6):
460–465.
[20] Bzdok, D., Altman, N., and Krzywinski, M. 2018. Statistics versus Machine Learning. Nature
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Deep-learning Models and Scientific Understanding through Explanations and
Representations
Giovanni Galli

Teramo University

In the rapidly evolving landscape of artificial intelligence, the understandability and explainability
of AI systems have become crucial concerns. As AI models grow increasingly complex, they often
operate as “black boxes”, making decisions without explaining their processes clearly. This opac-
ity can hinder trust, accountability, and ethical compliance, particularly in critical domains such as
healthcare, finance, law, and scientific research. Still, deep-learning models (DLMs) are powerful
tools in order to understand phenomena, as recognised by Páez (2019), Sullivan (2022), Fleisher
(2022), Jumper (2021a) and Abramson et al. (2024). Thus, on the one hand, Explainable Artificial
Intelligence (XAI) aims to answer the first issue about the opacity of the DLMs, offering us ways to
understand the DLMs; on the other hand, the kind of understanding gained from DLMs leads us
to re-define what scientific understanding is.

According to Sullivan (2022), the lack of understanding of DLMs does not limit our scientific
understanding of phenomena. She argues that when we fail to achieve understanding with DLMs,
it is not due to the lack of understanding of the DLMs in question but to the “link uncertainty”, i.e.
the lack of evidence, knowledge and understanding of how the model and its target-system are
related. On the opposite side, Räz and Beisbart (2022) argue that due to the lack of understanding
of DLMs, we may fail to understand a phenomenon scientifically through the use of the models.
Along their line, Durán (2021) claims that what we gain from DLMs is not a genuine understanding
of the phenomena and that XAI’s explanations are better defined as classifications.

In this paper, we first argue that amachine can explain and that some XAI explanations are rule-
based. We defend the idea that if specific XAI explanations can capture the rules underlying the
scrutinised phenomenon, they are genuinely scientific explanations. Second, we claim that, given
understanding as a noetic-mediated state, DLMs play the role of noetic mediators for scientific
understanding, even if they present essential differences from other traditionally well-suited me-
diators, such as explanations, theories, and non-artificial models. Moreover, we highlight a crucial
distinction when we speak of scientific understanding with DLMs and with other models and the-
ories. De Regt (2017) and Khalifa (2013, 2017) defend that scientific understanding (SU) is gained
via explanatory information about the phenomenon under scrutiny. However, when scientists
use DLMs to study and understand a phenomenon they cannot access all the relevant explana-
tory information. We present the case study of AlphaFold’s DLMs (Jumper et al., 2021a, 2021b)
to propose another form of SU, complementary to the explanatory one, namely representational
understanding (Galli, 2023). We then present the features of representational and explanatory
scientific understanding involved in scientific research with DLMs like AlphaFold’s models. In con-
clusion, we outline the differences between representational and explanatory understanding in
light of the explanations provided by XAI methods.
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Machine Learning, AI, and The Gradability of Explanatory Understanding
Insa Lawler

UNC Greensboro

It is a common place that explanatory understanding comes in degrees. Some people have more
understanding of a subject matter than others or a greater degree of understanding. Its gradabil-
ity is claimed to be one feature that sets apart understanding from knowledge. But what precisely
does it mean that understanding comes in degrees or is gradable? In my talk, I explore how the
gradability of understanding can be analyzed, drawing on insights from epistemology, formal se-
mantics, metaphysics, and philosophy of science. I will also shed light on what this implies for the
understanding we can gain frommachine learningmodels or generative artificial intelligence.

Scientific Progress in the Age of AI
Finnur Dellsén

University of Iceland

What role does artificial intelligence (AI) play – and what role might it play – in scientific progress?
Are AI systems best understood as tools for accelerating the scientific progress made by human
researchers, or are they capable of making scientific progress in their own right? Could AI systems
even become autonomous scientific agents one day, capable of generating, testing, evaluating,
and communicating scientific hypotheses in a way that produces scientific progress? And do re-
cent advances in AI research constitute genuine scientific progress, or are these developments
better understood as technological advances? This talk explores the relationship between AI and
scientific progress through these and related questions, proposing new directions for future re-
search. It explores both how the use of AI in science aligns with or challenges existing accounts
of scientific progress, and how the philosophical debate about these accounts sheds light on the
value of AI in science.
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Predictively-valid “Alien” Features, or Artifacts? Coping with Inscrutable Scien-
tific Progress
Cameron Buckner

University of Florida

Systems like AlphaFold raise the prospect of predictive AI systems that can blow past previous
upper bounds on the performance of hand-designed analytical models in many areas of scientific
analysis. It is difficult to disagree with the results of these systems, which can achieve predictive
accuracy on problems that were thought to be too complex or chaotic for human scientific theory
to solve. However, thesemodels may base their predictions on features that are in some sense be-
yond the cognitive grasp of humans–”alien” properties that may have predictive utility but which
are not natural or cognitively accessible to us. In this talk I will analyze these properties by begin-
ning with a discussion of adversarial attacks, and discuss methods for coping with this epistemic
situation in a scientific regime which increasingly relies on complex deep learning models for data
analysis.
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Useful Information

General

Talks will be held at the Internationales Begegnungszentrum at TU Dortmund. It is located at
Emil-Figge-Straße 59, 44227 Dortmund.

Coffee breaks and lunch will be offered at the workshop location. Wi-Fi will be available during
the conference via eduroam.

Signalchat?

The conference dinner will be held at the “Schönes Leben”, at Liebigstraße 23, 44139 Dortmund
on Thursday evening at 19:30.

How to get around?

To get to the conference venue, you can use the S1 train to the station “Dortmund Universität”.
From the station, you’ll need about 5–10minutes to walk to the ”Internationales Begegenungszen-
trum”, which is located at Emil-Figge-Straße 59, 44227 Dortmund.

The NH Hotel is in the immediate proximity of Dortmund main station. Walk straight to the left
when exiting the main station via the front exit; the hotel is within five minutes of walking dis-
tance.

The Schönes Leben is a 30 minutes walk from the main station or the hotel. You can also reach
it quickly from the train station “Möllerbrücke” or the subway station “Saarlandstraße”. Please
make sure to keep your tickets when you choose to use public transportation.
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Organization and Funding

This workshop is an event organized by the Emmy Noether Group UDNN: Scientific Understanding
and Deep Neural Networks, generously funded by the German Research Foundation (DFG; grant
508844757). It is also generously supported by the Department for Humanities and Theology at
TU Dortmund University.
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